{"created":"2023-05-15T10:02:15.966317+00:00","id":314,"links":{},"metadata":{"_buckets":{"deposit":"cd32842c-5968-40ad-87ce-0dbd76203a88"},"_deposit":{"created_by":3,"id":"314","owners":[3],"pid":{"revision_id":0,"type":"depid","value":"314"},"status":"published"},"_oai":{"id":"oai:mietan.repo.nii.ac.jp:00000314","sets":["2:82"]},"author_link":["671","670"],"item_2_biblio_info_12":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2004-03-20","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"27","bibliographicPageStart":"23","bibliographicVolumeNumber":"(52)","bibliographic_titles":[{"bibliographic_title":"紀要"}]}]},"item_2_description_11":{"attribute_name":"抄録(英)","attribute_value_mlt":[{"subitem_description":"In this paper, estimation of motion vector fields containing boundaries from noisy data is investigated, where the boundaries mean edges or spatial discontinuities. Then, regularization methods which can retain boundaries are required. We adopt evolution equations with non-linear diffusion terms derived from a logarithmic stabilizing functional. Estimates are obtained in the process of time evolution of the equations. Here, discritization method become critical issue. We propose a novel discritization method for these terms, which is a sort of minmax scheme. Results of simulations are displayed, where better estimates and more distinct boundaries of them are obtained with propesed method than with naive method.","subitem_description_type":"Other"}]},"item_2_description_15":{"attribute_name":"表示順","attribute_value_mlt":[{"subitem_description":"5","subitem_description_type":"Other"}]},"item_2_description_16":{"attribute_name":"アクセション番号","attribute_value_mlt":[{"subitem_description":"KJ00005095439","subitem_description_type":"Other"}]},"item_2_description_2":{"attribute_name":"ページ属性","attribute_value_mlt":[{"subitem_description":"P","subitem_description_type":"Other"}]},"item_2_description_8":{"attribute_name":"記事種別(日)","attribute_value_mlt":[{"subitem_description":"報文","subitem_description_type":"Other"}]},"item_2_description_9":{"attribute_name":"記事種別(英)","attribute_value_mlt":[{"subitem_description":"ARTICLE","subitem_description_type":"Other"}]},"item_2_source_id_1":{"attribute_name":"雑誌書誌ID","attribute_value_mlt":[{"subitem_source_identifier":"AN10433770","subitem_source_identifier_type":"NCID"}]},"item_2_source_id_19":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0918-6948 ","subitem_source_identifier_type":"ISSN"}]},"item_2_text_6":{"attribute_name":"著者所属(日)","attribute_value_mlt":[{"subitem_text_value":"三重短期大学"}]},"item_2_text_7":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_language":"en","subitem_text_value":"Tsu City College"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"上山, 英三"},{"creatorName":"ウエヤマ, エイゾウ","creatorNameLang":"ja-Kana"}],"nameIdentifiers":[{"nameIdentifier":"670","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"UEYAMA, Eizo","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"671","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-11-02"}],"displaytype":"detail","filename":"KJ00005095439.pdf","filesize":[{"value":"555.1 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"KJ00005095439.pdf","url":"https://mietan.repo.nii.ac.jp/record/314/files/KJ00005095439.pdf"},"version_id":"9eb6a7eb-b9da-45f2-be1b-526f76355695"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"運動ベクトル場の推定に用いる非線形拡散項の離散化法","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"運動ベクトル場の推定に用いる非線形拡散項の離散化法"},{"subitem_title":"A discritization method of nonlinear diffusion terms used for estimation of motion vector fields","subitem_title_language":"en"}]},"item_type_id":"2","owner":"3","path":["82"],"pubdate":{"attribute_name":"公開日","attribute_value":"2017-11-02"},"publish_date":"2017-11-02","publish_status":"0","recid":"314","relation_version_is_last":true,"title":["運動ベクトル場の推定に用いる非線形拡散項の離散化法"],"weko_creator_id":"3","weko_shared_id":-1},"updated":"2023-05-15T10:15:22.148774+00:00"}